Aidan MacDonagh ’14
Mechanical and Aerospace Engineering
Magnetic Nozzle Research
Magnetic nozzle research, such as the Magnetic Nozzle Experiment (MNX) at PPPL, involves the study of the flow of plasma through spatial constrictions imposed by magnetic fields and physical boundaries that effectively form an analog of the physical nozzle. This research has important applications in both magnetic fusion technology and in spacecraft propulsion technology. This summer I worked under Dr. Samuel Cohen at PPPL, where I conducted particle-in-cell (PIC) code simulations of plasma detachment from a magnetic nozzle. This process of detachment is considered crucial to both thrust production in a propulsion system and efficient energy generation in related fusion technology. My own work and the work of my co-interns addressed various components of Dr. Cohen’s Princeton Field-Reversed Configuration Experiment (PFRC), a reactor concept that could provide small-scale clean and sustainable power generation through nuclear fusion. Thanks to this internship, I not only developed a unique skill set relevant to my research area, but I also gained an understanding of the state of nuclear fusion technology and its importance to our future energy needs. I greatly enjoyed my work at PPPL under Dr. Cohen, and I am looking forward to continuing this work as my senior thesis this coming year.
2013
Climate and Energy
Princeton Plasma Physics Laboratory (PPPL) and Program in Plasma Science and Technology (PPST), Princeton, NJ
Dr. Samuel Cohen, Director, Program in Plasma Science and Technology, P.I., Magnetic Nozzle & FRC Experiments, Plasma Physics Laboratory. Lecturer with the rank of Professor in Astrophysical Sciences. Co-Director, Program in Plasma Science and Technology